mediapipe之人脸特征点468检测
生活随笔
收集整理的這篇文章主要介紹了
mediapipe之人脸特征点468检测
小編覺得挺不錯的,現(xiàn)在分享給大家,幫大家做個參考.
官網(wǎng)地址:
https://github.com/google/mediapipehttps://github.com/google/mediapipe
??
Mediapipe是google的一個開源項目,支持跨平臺的常用ML方案。項目主頁戳這里,可以看到很多常用的AI功能它都支持,舉幾個常用的例子:
直接上demo:
import cv2 import mediapipe as mp import timeclass FaceMeshDetector():def __init__(self,staticMode=False,maxFaces=2,minDetectionCon=0.5,minTrackCon=0.5):self.staticMode = staticModeself.maxFaces = maxFacesself.minDetectionCon = minDetectionConself.minTrackCon = minTrackConself.mpDraw = mp.solutions.drawing_utilsself.mpFaceMesh = mp.solutions.face_meshself.faceMesh = self.mpFaceMesh.FaceMesh(self.staticMode,self.maxFaces,False,self.minDetectionCon,self.minTrackCon) # 一張臉顯示# 設(shè)置點的大小和半徑self.drawSpec = self.mpDraw.DrawingSpec(thickness=1, circle_radius=2)def findFaceMesh(self, img, draw=True):self.imgRGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)self.results = self.faceMesh.process(self.imgRGB)faces = []if self.results.multi_face_landmarks:for faceLms in self.results.multi_face_landmarks:if draw:self.mpDraw.draw_landmarks(img, faceLms, self.mpFaceMesh.FACEMESH_LEFT_EYEBROW, self.drawSpec,self.drawSpec) # 設(shè)置點的大小face =[]for id,lm in enumerate(faceLms.landmark):# print(lm)ih, iw, ic = img.shapex, y = int(lm.x * iw), int(lm.y * ih)#繪制出坐標(biāo)點的數(shù)字cv2.putText(img, str(id), (x, y), cv2.FONT_HERSHEY_PLAIN, 0.5, (0, 255, 0), 1)face.append([x,y])faces.append(face)return img,facesdef main():cap = cv2.VideoCapture("../videos/heng.mp4")pTime = 0detector = FaceMeshDetector(maxFaces=2)while True:success, img = cap.read()img,faces = detector.findFaceMesh(img,False) #True表示繪制人臉,False表示不繪制人臉if len(faces)!=0:print(faces[0])cTime = time.time()fps = 1 / (cTime - pTime)pTime = cTimecv2.putText(img, f'FPS{int(fps)}', (20, 70), cv2.FONT_HERSHEY_PLAIN, 3, (0, 255, 0), 3)cv2.imshow("Image", img)cv2.waitKey(1)if __name__ == "__main__":main()效果:
總結(jié)
以上是生活随笔為你收集整理的mediapipe之人脸特征点468检测的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 4-tensorflow中张量的数学运算
- 下一篇: 2023年免费推广平台有哪些