重返数学史的黄金时代,由数学推动诞生的人工智能,一部人类智慧形成的历史...
【導讀】數學,特別是西方數學,起源于非常實際的目的,從土地測量到灌溉系統再到推理演繹體系,數學至少在認知、測量、記錄和預測四個方面滿足了人類的需求。現在的人工智能在測量和記錄上取得極大的成就,而在認知和預測上被限制。
人類社會逐漸從自然屆中抽象出數學的過程令人感動,本身認識到年月這些歷法的知識就是一個奇跡,從埃及到巴比倫最后到希臘,畢達哥拉斯亞里士多德柏拉圖阿基米德到歐幾里得,都是奇跡,
公理體系一旦建立,人類的意識水平都上升到一個高度了。
隨著計算機的逐步強大,人們把人類文明形成的公理體系賦予給計算機,創造和演化出人工智能。今天我們所看到的人工智能,從某個程度上就是人類幾千年文明的結晶。
這個BBC的一部紀錄片:the story of math .
非常向往巴比倫和希臘的那種態度,崇尚科學,讓文明綻放。
數學的作用
數學——特別是西方數學——起源于非常實際的目的,從土地測量到灌溉系統再到推理演繹體系,數學至少在四個方面滿足了人類的需求:
1, 認知——認識物質世界的構成;
2,測量——分配和調配資源,制定各種標準;
3,記錄——數據和財富積累;
4,預測——改進生活條件。
現在的人工智能 2,3上取得極大的成就,而在1,4上被限制。
無論是哪個人種,哪個文明,對科學都有類似的領悟能力,這和個體的領悟能力類似,非常的神奇。
越抽象,越接近本質,應用越廣泛。這就是智能科學的推動力。
http://bbc.in/Um4ik6
精確是不平凡的開始,牛頓利用數學這個工具來精確的描述物理世界的規律,取得了非凡的成就,類似的數學是萬能的工具,在任何一個行業都是,缺少的是發現模式的心靈。
最強的數學家,思考的是還是存在的哲學問題,采用數學作為解釋世界的工具而已(無論是數字的產生歐式幾何代數數形結合,實分析,復分析,變分還是,非歐幾何,黎曼幾何等).這是高斯黎曼這類人的高度.
人工智能,為解決復雜性問題為其核心功能。他需要具備更高緯度的數學思維。智慧因為他的思考維度的不同,而有不同的力量和色彩。
從圖形到數目,從幾何論證到代數消解,從特殊求解到尋找通式,……
你可能無法感受每一次飛躍帶給發現者的驚喜,但想想你從Cantor那學來的對無窮的理解,那就是古人發現零時的心情。
透過三角學,幾何被翻譯成了代數;
透過映射,我們在無窮間看出了大小;
透過群,方程變得像某種對稱結構般美妙……
每每一把利劍撕開未知的陰霾,那片少有人知的黑白就被抹上了色彩。
雖然自求解高次方程之后我就變成了過客,可我知道了:數學真的源于自然,源于生活,就好像n^2-(n+1)(n-1) = 1不是來自代數變換,而是源于某個染缸前的起舞。
人類歷史上有幾次系統的回顧,1900年的數學大會就是一個。
文明的發展,來自個體的思想突破,比如對無窮的理解,高維空間,相對論,量子力學,弦論。
每打開一扇門,就會收獲許許多多的精神果實,比如對無窮的理解,比如伽利略的望遠鏡,比如Wolfram的元胞自動機,比如對分類理解產生的支持向量機。
康托的一生很慘淡,和許多其它窮困潦倒的數學家一樣,思想超出這個時代,就要懂得等待和放棄,像高斯,自知之明的把非歐幾何封藏起來。
http://bbc.in/PywPON
龐加萊針對n體問題的探索,簡介導致了混沌的發現,一想到混沌,就感到無奈。混沌,不確定性正式西方理性發展到困境時的一個閃現的曙光。
了解一門學科的未來,就要從這門學科的歷史和現狀入手。對待任何一個知識體系,都必須有這種意識。比如計算機科學,只有了解了動機,初生和逐步發展的過程,才能更好的理解現在的一切,才能更好的把握未來的發展動向,把有限的精力,投入到無盡的推動中去。
數學的故事是一個生動的數學史教材,把許多書上看到的文字和圖片變成了實在的影響,這種真實淡化了數學的神秘,更貼近現實的生活。歷史不僅僅是一個童話故事,每一個人都身在其中。
理解人工智能就要去理解人類的智慧形成的歷史,理性發展的歷史,理性帶來的困境,現代性語義的突破。
數學早已深入到生活之中,只是沒有足夠的修養和慧眼,無法看的到看的清而已。數學源自實際問題,得到更高級的抽象,用來作為解決更復雜實際問題的武器,拓撲學就是一個例子,從簡單的七橋問題開始,歐拉啟動了這次飛躍。提到拓撲學,就提到了龐加萊猜想,然后就提到了俄羅斯的傳奇數學家佩爾曼,這個解決了百年難題卻拒菲爾茲獎的奇才,就想到了,國人的鬧劇。
找到佩爾曼和理解他的證明一樣困難,很喜歡這句話,真正的數學家,就是要純粹才能走的更遠,中國的數學界,逐漸被感染的失去希望了。
希爾伯特是一個有雄心壯志的數學家,和牛頓歐幾里得高斯類似,堅信通過自己的努力,可以解開一切謎題。
We must know, we will know.
提到希爾伯特公理體系,就不得不提到哥德爾,提到不確定性,我至今仍有閱讀其證明的興趣。結合圖靈停機問題,可計算性,混沌,自由意識,人工智能和決定論,無窮大和超越是一個迷人的論題。
哥德爾在獲得最大突破之后,不久精神出了問題,就像牛頓晚年寄托與神學類似,即便是堅定的唯物論者,最終也不得不承認,無論是數學物理還是哲學,都不可能獲得終極答案。這個身處的世界,歸根結底,是不可知的。
"在奧地利和德國,數學即將死亡",很喜歡這一句,我一直這么認為,即便是數學這種可能是柏拉圖實在的理論體系,也不是永恒的。
希爾伯特和歐洲的主導地位和500年的世界數學中心,悲劇的離開了。想起希爾伯特的失落絕望和無奈,不禁一陣酸楚,眼眶濕潤。
科恩對康托連續統假設的研究成果震撼了我一下,在所有人懷疑的時候,哥德爾投了贊成票,再然后,人們普遍的接受了,有兩個不同的數學世界,同一個命題的真假可以是不同的。這是再一次的對數學本身的一次反省,就像對存在的反思。
迄今為止,數學依舊是探尋世界本質的最有力工具,正如畢達哥拉斯說信仰的,上帝使用數學創造了這個世界。到這里,我似乎有了一個感悟,對我所渴望的,有了更進一步的認識,并不是研究和推動數學,而是了解,借助這個工具來武裝自己求索的心。
古典數學為計算機裝載了大腦,
近代數學為計算機增加了智能,
現代數學給計算機賦予了靈魂,
這就是數學賦予計算機的智能。
————
編輯?∑ Gemini
微信公眾號“算法數學之美”,由算法與數學之美團隊打造的另一個公眾號,歡迎大家掃碼關注!
更多精彩:
?如何向5歲小孩解釋什么是支持向量機(SVM)?
?自然底數e的意義是什么?
?費馬大定理,集驚險與武俠于一體
?簡單的解釋,讓你秒懂“最優化” 問題
?一分鐘看懂一維空間到十維空間
??本科、碩士和博士到底有什么區別?
?小波變換通俗解釋
?微積分必背公式
?影響計算機算法世界的十位大師
?數據挖掘之七種常用的方法
算法數學之美微信公眾號歡迎賜稿
稿件涉及數學、物理、算法、計算機、編程等相關領域,經采用我們將奉上稿酬。
投稿郵箱:math_alg@163.com
總結
以上是生活随笔為你收集整理的重返数学史的黄金时代,由数学推动诞生的人工智能,一部人类智慧形成的历史...的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 王元院士漫谈哥德巴赫猜想
- 下一篇: 读博士也有技巧:如何快乐地做研究