vb.net2019- 机器学习ml.net情绪分析(2)
生活随笔
收集整理的這篇文章主要介紹了
vb.net2019- 机器学习ml.net情绪分析(2)
小編覺得挺不錯的,現(xiàn)在分享給大家,幫大家做個參考.
(8)創(chuàng)建機器學習上下文和加載數(shù)據(jù)函數(shù)
Imports SystemImports System.CollectionsImports System.IOImports System.LinqImports Microsoft.Data.DataViewImports Microsoft.MLImports Microsoft.ML.TrainersImports Microsoft.ML.Transforms.TextModule ProgramPrivate ReadOnly _dataPath As String = Path.Combine(Environment.CurrentDirectory, "data", "yelp_labelled.txt")Private ReadOnly _modelPath As String = Path.Combine(Environment.CurrentDirectory, "data", "model.zip")Public ReadOnly Property DataPath As StringGetReturn _dataPathEnd GetEnd PropertyPublic ReadOnly Property ModelPath As StringGetReturn _modelPathEnd GetEnd PropertySub Main(args As String())'創(chuàng)建上下文ML作業(yè)Dim mlConText As New MLContextDim splitDataView As TrainCatalogBase.TrainTestData = LoadData(mlConText)End SubPublic Function LoadData(MLContext As MLContext) As TrainCatalogBase.TrainTestData'加載數(shù)據(jù),將數(shù)據(jù)集分為訓練集與測試集并返回Return NothingEnd FunctionEnd Module(9)分割并讀入樣本數(shù)據(jù)集
Imports System Imports System.Collections Imports System.IO Imports System.Linq Imports Microsoft.Data.DataView Imports Microsoft.ML Imports Microsoft.ML.Trainers Imports Microsoft.ML.Transforms.TextModule ProgramPrivate ReadOnly _dataPath As String = Path.Combine(Environment.CurrentDirectory, "data", "yelp_labelled.txt")Private ReadOnly _modelPath As String = Path.Combine(Environment.CurrentDirectory, "data", "model.zip")Public ReadOnly Property DataPath As StringGetReturn _dataPathEnd GetEnd PropertyPublic ReadOnly Property ModelPath As StringGetReturn _modelPathEnd GetEnd PropertySub Main(args As String())'創(chuàng)建上下文ML作業(yè)Dim mlConText As New MLContextDim splitDataView As TrainCatalogBase.TrainTestData = LoadData(mlConText)End SubPublic Function LoadData(mlContext As MLContext) As TrainCatalogBase.TrainTestData'加載數(shù)據(jù),將數(shù)據(jù)集分為訓練集與測試集并返回'加載數(shù)據(jù)集通過基本的數(shù)據(jù)管道dataviewDim dataView As IDataView = mlContext.Data.LoadFromTextFile(Of SentimentData)(_dataPath, hasHeader:=False)'拆分數(shù)據(jù)集進行模型訓練和測試,20%的測試集Dim splitDataView As TrainCatalogBase.TrainTestData = mlContext.BinaryClassification.TrainTestSplit(dataView, testFraction:=0.2)Return splitDataViewEnd Function End Module(10)提取特征,確認模型,返回模型
Sub Main(args As String())'創(chuàng)建上下文ML作業(yè)Dim mlConText As New MLContextDim splitDataView As TrainCatalogBase.TrainTestData = LoadData(mlConText)Dim model As ITransformer = BuildAndTrainModel(mlConText, splitDataView.TrainSet) End Sub Public Function BuildAndTrainModel(mlContext As MLContext, splitTrainSet As IDataView) As ITransformer'將文本列特征化為機器學習算法使用的名為Features的數(shù)值向量的FeaturizeText,再將決策樹算法追加到管道Dim pipleline = mlContext.Transforms.Text.FeaturizeText(outputColumnName:=DefaultColumnNames.Features, inputColumnName:=NameOf(SentimentData.SentimentText)).Append(mlContext.BinaryClassification.Trainers.FastTree(numLeaves:=50, numTrees:=50, minDatapointsInLeaves:=20))Dim model = pipleline.Fit(splitTrainSet)Return model End Function總結
以上是生活随笔為你收集整理的vb.net2019- 机器学习ml.net情绪分析(2)的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: Java面试题(亲身经历)
- 下一篇: python 爬关键词,Python爬虫