基于深度学习的手写数字识别、python实现
基于深度學(xué)習(xí)的手寫數(shù)字識別、python實(shí)現(xiàn)
- 一、what is 深度學(xué)習(xí)
- 二、加深層可以減少網(wǎng)絡(luò)的參數(shù)數(shù)量
- 三、深度學(xué)習(xí)的手寫數(shù)字識別
一、what is 深度學(xué)習(xí)
深度學(xué)習(xí)是加深了層的深度神經(jīng)網(wǎng)絡(luò)。
二、加深層可以減少網(wǎng)絡(luò)的參數(shù)數(shù)量
加深層的網(wǎng)絡(luò)可以用更少參數(shù)獲得與沒有加深層同等水平的表現(xiàn)力。
一次5 * 5卷積運(yùn)算,可以由兩次3 * 3卷積運(yùn)算抵充。
前者參數(shù)數(shù)量25,后者18 。
而且,參數(shù)數(shù)量差隨著層加深,變大。
疊加小型濾波器來加深網(wǎng)絡(luò)好處是減少參數(shù)的數(shù)量,擴(kuò)大receptive filed(感受野),什么是感受野,就是讓神經(jīng)元變化的一個(gè)局部區(qū)域。
通過疊加層,將ReLU等激活函數(shù)夾在卷積層中間,有助于提高網(wǎng)絡(luò)表現(xiàn)力,因?yàn)榉蔷€性函數(shù)的疊加,可以表達(dá)更復(fù)雜的東西。
加深層,可以分層次的分解需要學(xué)習(xí)的問題,也就是說,可以將各層要學(xué)習(xí)的問題分解成簡單問題。
三、深度學(xué)習(xí)的手寫數(shù)字識別
網(wǎng)絡(luò)結(jié)構(gòu):
基于3*3的小型濾波器的卷積層(什么是卷積層,參考我之前寫的,卷積神經(jīng)網(wǎng)絡(luò)的整體結(jié)構(gòu)、卷積層、池化、python實(shí)現(xiàn))
激活函數(shù):RELU(什么是激活函數(shù),參考我之前寫的,神經(jīng)網(wǎng)絡(luò)的激活函數(shù)、并通過python實(shí)現(xiàn)激活函數(shù);怎么實(shí)現(xiàn)激活函數(shù)層反向傳播,參考我之前寫的,結(jié)合反向傳播算法使用python實(shí)現(xiàn)神經(jīng)網(wǎng)絡(luò)的ReLU、Sigmoid、Affine、Softmax-with-Loss層)
全連接層后面用Dropout層(什么是Dropout層,參考我之前寫的,解決神經(jīng)網(wǎng)絡(luò)過擬合問題—Dropout方法、python實(shí)現(xiàn))
基于Adam的最優(yōu)化(對梯度下降的優(yōu)化,參考我之前寫的,神經(jīng)網(wǎng)絡(luò)的SGD、Momentum、AdaGrad、Adam最優(yōu)化方法及其python實(shí)現(xiàn))
使用He初始值作為權(quán)重初始值。(什么是He初始值:參考之前寫的,關(guān)于神經(jīng)網(wǎng)絡(luò)權(quán)重初始值的設(shè)置的研究)
代碼中g(shù)radient求梯度的,我之前都寫了,(參考之前寫的,梯度、梯度法、python實(shí)現(xiàn)神經(jīng)網(wǎng)絡(luò)的梯度計(jì)算)。
損失函數(shù)是什么,(參考之前寫的,損失函數(shù)、python實(shí)現(xiàn)均方誤差、交叉熵誤差函數(shù)、mini-batch的損失函數(shù))。
有了這個(gè)網(wǎng)絡(luò)的代碼,怎么用數(shù)據(jù)集測試,我之前都寫了,(參考之前寫的:基于卷積神經(jīng)網(wǎng)絡(luò)的手寫數(shù)字識別、python實(shí)現(xiàn);基于隨機(jī)梯度下降法的手寫數(shù)字識別、epoch是什么、python實(shí)現(xiàn);下載MNIST數(shù)據(jù)集并使用python將數(shù)據(jù)轉(zhuǎn)換成NumPy數(shù)組(源碼解析);使用python對數(shù)據(jù)集進(jìn)行批處理)
關(guān)于網(wǎng)絡(luò)全過程傳遞表示,也就是predict函數(shù),我之前都寫了,(參考之前寫的:使用python構(gòu)建三層神經(jīng)網(wǎng)絡(luò)、softmax函數(shù))
這個(gè)深度學(xué)習(xí)網(wǎng)絡(luò)是對前面所有知識的整合。如果你從深度學(xué)習(xí)開始入門學(xué)習(xí)機(jī)器學(xué)習(xí),那么將在一天內(nèi)學(xué)成所有入門知識,我就是這么學(xué)的。
現(xiàn)在,才剛剛進(jìn)了機(jī)器學(xué)習(xí)的大門,之前講的所有東西,相當(dāng)于幼兒園知識。
# coding: utf-8 import sys, os sys.path.append(os.pardir) # 為了導(dǎo)入父目錄的文件而進(jìn)行的設(shè)定 import pickle import numpy as np from collections import OrderedDict from common.layers import *class DeepConvNet:"""識別率為99%以上的高精度的ConvNet網(wǎng)絡(luò)結(jié)構(gòu)如下所示conv - relu - conv- relu - pool -conv - relu - conv- relu - pool -conv - relu - conv- relu - pool -affine - relu - dropout - affine - dropout - softmax"""def __init__(self, input_dim=(1, 28, 28),conv_param_1 = {'filter_num':16, 'filter_size':3, 'pad':1, 'stride':1},conv_param_2 = {'filter_num':16, 'filter_size':3, 'pad':1, 'stride':1},conv_param_3 = {'filter_num':32, 'filter_size':3, 'pad':1, 'stride':1},conv_param_4 = {'filter_num':32, 'filter_size':3, 'pad':2, 'stride':1},conv_param_5 = {'filter_num':64, 'filter_size':3, 'pad':1, 'stride':1},conv_param_6 = {'filter_num':64, 'filter_size':3, 'pad':1, 'stride':1},hidden_size=50, output_size=10):# 初始化權(quán)重===========# 各層的神經(jīng)元平均與前一層的幾個(gè)神經(jīng)元有連接(TODO:自動計(jì)算)pre_node_nums = np.array([1*3*3, 16*3*3, 16*3*3, 32*3*3, 32*3*3, 64*3*3, 64*4*4, hidden_size])wight_init_scales = np.sqrt(2.0 / pre_node_nums) # 使用ReLU的情況下推薦的初始值self.params = {}pre_channel_num = input_dim[0]for idx, conv_param in enumerate([conv_param_1, conv_param_2, conv_param_3, conv_param_4, conv_param_5, conv_param_6]):self.params['W' + str(idx+1)] = wight_init_scales[idx] * np.random.randn(conv_param['filter_num'], pre_channel_num, conv_param['filter_size'], conv_param['filter_size'])self.params['b' + str(idx+1)] = np.zeros(conv_param['filter_num'])pre_channel_num = conv_param['filter_num']self.params['W7'] = wight_init_scales[6] * np.random.randn(64*4*4, hidden_size)self.params['b7'] = np.zeros(hidden_size)self.params['W8'] = wight_init_scales[7] * np.random.randn(hidden_size, output_size)self.params['b8'] = np.zeros(output_size)# 生成層===========self.layers = []self.layers.append(Convolution(self.params['W1'], self.params['b1'], conv_param_1['stride'], conv_param_1['pad']))self.layers.append(Relu())self.layers.append(Convolution(self.params['W2'], self.params['b2'], conv_param_2['stride'], conv_param_2['pad']))self.layers.append(Relu())self.layers.append(Pooling(pool_h=2, pool_w=2, stride=2))self.layers.append(Convolution(self.params['W3'], self.params['b3'], conv_param_3['stride'], conv_param_3['pad']))self.layers.append(Relu())self.layers.append(Convolution(self.params['W4'], self.params['b4'],conv_param_4['stride'], conv_param_4['pad']))self.layers.append(Relu())self.layers.append(Pooling(pool_h=2, pool_w=2, stride=2))self.layers.append(Convolution(self.params['W5'], self.params['b5'],conv_param_5['stride'], conv_param_5['pad']))self.layers.append(Relu())self.layers.append(Convolution(self.params['W6'], self.params['b6'],conv_param_6['stride'], conv_param_6['pad']))self.layers.append(Relu())self.layers.append(Pooling(pool_h=2, pool_w=2, stride=2))self.layers.append(Affine(self.params['W7'], self.params['b7']))self.layers.append(Relu())self.layers.append(Dropout(0.5))self.layers.append(Affine(self.params['W8'], self.params['b8']))self.layers.append(Dropout(0.5))self.last_layer = SoftmaxWithLoss()def predict(self, x, train_flg=False):for layer in self.layers:if isinstance(layer, Dropout):x = layer.forward(x, train_flg)else:x = layer.forward(x)return xdef loss(self, x, t):y = self.predict(x, train_flg=True)return self.last_layer.forward(y, t)def accuracy(self, x, t, batch_size=100):if t.ndim != 1 : t = np.argmax(t, axis=1)acc = 0.0for i in range(int(x.shape[0] / batch_size)):tx = x[i*batch_size:(i+1)*batch_size]tt = t[i*batch_size:(i+1)*batch_size]y = self.predict(tx, train_flg=False)y = np.argmax(y, axis=1)acc += np.sum(y == tt)return acc / x.shape[0]def gradient(self, x, t):# forwardself.loss(x, t)# backwarddout = 1dout = self.last_layer.backward(dout)tmp_layers = self.layers.copy()tmp_layers.reverse()for layer in tmp_layers:dout = layer.backward(dout)# 設(shè)定grads = {}for i, layer_idx in enumerate((0, 2, 5, 7, 10, 12, 15, 18)):grads['W' + str(i+1)] = self.layers[layer_idx].dWgrads['b' + str(i+1)] = self.layers[layer_idx].dbreturn gradsdef save_params(self, file_name="params.pkl"):params = {}for key, val in self.params.items():params[key] = valwith open(file_name, 'wb') as f:pickle.dump(params, f)def load_params(self, file_name="params.pkl"):with open(file_name, 'rb') as f:params = pickle.load(f)for key, val in params.items():self.params[key] = valfor i, layer_idx in enumerate((0, 2, 5, 7, 10, 12, 15, 18)):self.layers[layer_idx].W = self.params['W' + str(i+1)]self.layers[layer_idx].b = self.params['b' + str(i+1)] 創(chuàng)作挑戰(zhàn)賽新人創(chuàng)作獎勵來咯,堅(jiān)持創(chuàng)作打卡瓜分現(xiàn)金大獎總結(jié)
以上是生活随笔為你收集整理的基于深度学习的手写数字识别、python实现的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 软件测试msf模型,Visual Stu
- 下一篇: 绘图python_Python绘图