Cauchy-Schwarz Inequality for Integrals for any two functions clarification
Cauchy-Schwarz says
∫Efgdx≤(∫Ef2dx)1/2(∫Eg2dx)1/2\int_{E} f g \mathrmvt6mr5x x \leq\left(\int_{E} f^{2} \mathrmvt6mr5x x\right)^{1 / 2}\left(\int_{E} g^{2} \mathrmvt6mr5x x\right)^{1 / 2}∫E?fgdx≤(∫E?f2dx)1/2(∫E?g2dx)1/2
where ∫E\int_{E}∫E? is a definite integral. Then the AM?GM ̄\underline{\mathrm{AM}-\mathrm{GM}}AM?GM? says that for a,b≥0a, b \geq 0a,b≥0
ab≤a+b2\sqrt{a b} \leq \frac{a+b}{2} ab?≤2a+b?
Applying (2) to (1) yields (for?c>0)(\text { for } c>0)(?for?c>0)
∫Efgdx=∫E(cf)(g/c)dx≤c2∫Ef2dx+12c∫Eg2dx\begin{aligned} \int_{E} f g \mathrmvt6mr5x x &=\int_{E}(\sqrt{c} f)(g / \sqrt{c}) \mathrmvt6mr5x x \\ & \leq \frac{c}{2} \int_{E} f^{2} \mathrmvt6mr5x x+\frac{1}{2 c} \int_{E} g^{2} \mathrmvt6mr5x x \end{aligned}∫E?fgdx?=∫E?(c?f)(g/c?)dx≤2c?∫E?f2dx+2c1?∫E?g2dx?
LINK: https://math.stackexchange.com/questions/351905/cauchy-schwarz-inequality-for-integrals-for-any-two-functions-clarification
總結
以上是生活随笔為你收集整理的Cauchy-Schwarz Inequality for Integrals for any two functions clarification的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 2020-07-07 内模原理(The
- 下一篇: 论文写作常见错误(1)