c语言平面向量加法考点,平面向量的加减法怎么死活都不会?有没有什么口诀?例如:向量AB+BC=?向量OA-OB=?向量AB-CB=?有没有什么口诀!...
設a=(x,y),b=(x',y').
1、向量的加法
向量的加法滿足平行四邊形法則和三角形法則.
AB+BC=AC.
a+b=(x+x',y+y').
a+0=0+a=a.
向量加法的運算律:
交換律:a+b=b+a;
結合律:(a+b)+c=a+(b+c).
2、向量的減法
如果a、b是互為相反的向量,那么a=-b,b=-a,a+b=0.0的反向量為0
AB-AC=CB.即“共同起點,指向被減”
a=(x,y) b=(x',y') 則 a-b=(x-x',y-y').
4、數乘向量
實數λ和向量a的乘積是一個向量,記作λa,且∣λa∣=∣λ∣?∣a∣.
當λ>0時,λa與a同方向;
當λ<0時,λa與a反方向;
當λ=0時,λa=0,方向任意.
當a=0時,對于任意實數λ,都有λa=0.
注:按定義知,如果λa=0,那么λ=0或a=0.
實數λ叫做向量a的系數,乘數向量λa的幾何意義就是將表示向量a的有向線段伸長或壓縮.
當∣λ∣>1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上伸長為原來的∣λ∣倍;
當∣λ∣<1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上縮短為原來的∣λ∣倍.
數與向量的乘法滿足下面的運算律
結合律:(λa)?b=λ(a?b)=(a?λb).
向量對于數的分配律(第一分配律):(λ+μ)a=λa+μa.
數對于向量的分配律(第二分配律):λ(a+b)=λa+λb.
數乘向量的消去律:① 如果實數λ≠0且λa=λb,那么a=b.② 如果a≠0且λa=μa,那么λ=μ.
3、向量的的數量積
定義:已知兩個非零向量a,b.作OA=a,OB=b,則角AOB稱作向量a和向量b的夾角,記作〈a,b〉并規定0≤〈a,b〉≤π
定義:兩個向量的數量積(內積、點積)是一個數量,記作a?b.若a、b不共線,則a?b=|a|?|b|?cos〈a,b〉;若a、b共線,則a?b=+-∣a∣∣b∣.
向量的數量積的坐標表示:a?b=x?x'+y?y'.
向量的數量積的運算律
a?b=b?a(交換律);
(λa)?b=λ(a?b)(關于數乘法的結合律);
(a+b)?c=a?c+b?c(分配律);
向量的數量積的性質
a?a=|a|的平方.
a⊥b 〈=〉a?b=0.
|a?b|≤|a|?|b|.
向量的數量積與實數運算的主要不同點
1、向量的數量積不滿足結合律,即:(a?b)?c≠a?(b?c);例如:(a?b)^2≠a^2?b^2.
2、向量的數量積不滿足消去律,即:由 a?b=a?c (a≠0),推不出 b=c.
3、|a?b|≠|a|?|b|
4、由 |a|=|b| ,推不出 a=b或a=-b.
4、向量的向量積
定義:兩個向量a和b的向量積(外積、叉積)是一個向量,記作a×b.若a、b不共線,則a×b的模是:∣a×b∣=|a|?|b|?sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按這個次序構成右手系.若a、b共線,則a×b=0.
向量的向量積性質:
∣a×b∣是以a和b為邊的平行四邊形面積.
a×a=0.
a‖b〈=〉a×b=0.
向量的向量積運算律
a×b=-b×a;
(λa)×b=λ(a×b)=a×(λb);
(a+b)×c=a×c+b×c.
注:向量沒有除法,“向量AB/向量CD”是沒有意義的.
向量的三角形不等式
1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣;
① 當且僅當a、b反向時,左邊取等號;
② 當且僅當a、b同向時,右邊取等號.
2、∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣.
① 當且僅當a、b同向時,左邊取等號;
② 當且僅當a、b反向時,右邊取等號.
定比分點
定比分點公式(向量P1P=λ?向量PP2)
設P1、P2是直線上的兩點,P是l上不同于P1、P2的任意一點.則存在一個實數 λ,使 向量P1P=λ?向量PP2,λ叫做點P分有向線段P1P2所成的比.
若P1(x1,y1),P2(x2,y2),P(x,y),則有
OP=(OP1+λOP2)(1+λ);(定比分點向量公式)
x=(x1+λx2)/(1+λ),
y=(y1+λy2)/(1+λ).(定比分點坐標公式)
我們把上面的式子叫做有向線段P1P2的定比分點公式
三點共線定理
若OC=λOA +μOB ,且λ+μ=1 ,則A、B、C三點共線
三角形重心判斷式
在△ABC中,若GA +GB +GC=O,則G為△ABC的重心
[編輯本段]向量共線的重要條件
若b≠0,則a//b的重要條件是存在唯一實數λ,使a=λb.
a//b的重要條件是 xy'-x'y=0.
零向量0平行于任何向量.
[編輯本段]向量垂直的充要條件
a⊥b的充要條件是 a?b=0.
a⊥b的充要條件是 xx'+yy'=0.
零向量0垂直于任何向量.不知你要的是不是這些?
解析看不懂?求助智能家教解答查看解答
更多答案(2)
總結
以上是生活随笔為你收集整理的c语言平面向量加法考点,平面向量的加减法怎么死活都不会?有没有什么口诀?例如:向量AB+BC=?向量OA-OB=?向量AB-CB=?有没有什么口诀!...的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: R 安装详解
- 下一篇: think php 子查询,使用thin