【Python】Pyecharts数据可视化模块练习
生活随笔
收集整理的這篇文章主要介紹了
【Python】Pyecharts数据可视化模块练习
小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
python:Pyecharts數據可視化模塊練習
# -*- coding: utf-8 -*- """ Created on Sun Aug 5 22:16:09 2018@author: A3 """ # ============================================================================= from pyecharts import Geodata = [("海門", 9),("鄂爾多斯", 12),("招遠", 12),("舟山", 12),("齊齊哈爾", 14),("鹽城", 15),("赤峰", 16),("青島", 18),("乳山", 18),("金昌", 19),("泉州", 21),("萊西", 21),("日照", 21),("膠南", 22),("南通", 23),("拉薩", 24),("云浮", 24),("梅州", 25),("文登", 25),("上海", 25),("攀枝花", 25),("威海", 25),("承德", 25),("廈門", 26),("汕尾", 26),("潮州", 26),("丹東", 27),("太倉", 27),("曲靖", 27),("煙臺", 28),("福州", 29),("瓦房店", 30),("即墨", 30),("撫順", 31),("玉溪", 31),("張家口", 31),("陽泉", 31),("萊州", 32),("湖州", 32),("汕頭", 32),("昆山", 33),("寧波", 33),("湛江", 33),("揭陽", 34),("榮成", 34),("連云港", 35),("葫蘆島", 35),("常熟", 36),("東莞", 36),("河源", 36),("淮安", 36),("泰州", 36),("南寧", 37),("營口", 37),("惠州", 37),("江陰", 37),("蓬萊", 37),("韶關", 38),("嘉峪關", 38),("廣州", 38),("延安", 38),("太原", 39),("清遠", 39),("中山", 39),("昆明", 39),("壽光", 40),("盤錦", 40),("長治", 41),("深圳", 41),("珠海", 42),("宿遷", 43),("咸陽", 43),("銅川", 44),("平度", 44),("佛山", 44),("海口", 44),("江門", 45),("章丘", 45),("肇慶", 46),("大連", 47),("臨汾", 47),("吳江", 47),("石嘴山", 49),("沈陽", 50),("蘇州", 50),("茂名", 50),("嘉興", 51),("長春", 51),("膠州", 52),("銀川", 52),("張家港", 52),("三門峽", 53),("錦州", 54),("南昌", 54),("柳州", 54),("三亞", 54),("自貢", 56),("吉林", 56),("陽江", 57),("瀘州", 57),("西寧", 57),("宜賓", 58),("呼和浩特", 58),("成都", 58),("大同", 58),("鎮江", 59),("桂林", 59),("張家界", 59),("宜興", 59),("北海", 60),("西安", 61),("金壇", 62),("東營", 62),("牡丹江", 63),("遵義", 63),("紹興", 63),("揚州", 64),("常州", 64),("濰坊", 65),("重慶", 66),("臺州", 67),("南京", 67),("濱州", 70),("貴陽", 71),("無錫", 71),("本溪", 71),("克拉瑪依", 72),("渭南", 72),("馬鞍山", 72),("寶雞", 72),("焦作", 75),("句容", 75),("北京", 79),("徐州", 79),("衡水", 80),("包頭", 80),("綿陽", 80),("烏魯木齊", 84),("棗莊", 84),("杭州", 84),("淄博", 85),("鞍山", 86),("溧陽", 86),("庫爾勒", 86),("安陽", 90),("開封", 90),("濟南", 92),("德陽", 93),("溫州", 95),("九江", 96),("邯鄲", 98),("臨安", 99),("蘭州", 99),("滄州", 100),("臨沂", 103),("南充", 104),("天津", 105),("富陽", 106),("泰安", 112),("諸暨", 112),("鄭州", 113),("哈爾濱", 114),("聊城", 116),("蕪湖", 117),("唐山", 119),("平頂山", 119),("邢臺", 119),("德州", 120),("濟寧", 120),("荊州", 127),("宜昌", 130),("義烏", 132),("麗水", 133),("洛陽", 134),("秦皇島", 136),("株洲", 143),("石家莊", 147),("萊蕪", 148),("常德", 152),("保定", 153),("湘潭", 154),("金華", 157),("岳陽", 169),("長沙", 175),("衢州", 177),("廊坊", 193),("菏澤", 194),("合肥", 229),("武漢", 273),("大慶", 279)] geo = Geo("全國主要城市逾期情況", "data from 3dp", title_color="#fff",title_pos="center", width=1000,height=600, background_color='#404a59') attr, value = geo.cast(data) geo.add("", attr, value, visual_range=[0, 200], maptype='china',visual_text_color="#fff",symbol_size=10, is_visualmap=True) geo.render(r"C:\Users\A3\Desktop\全國主要城市逾期情況.html")#生成html文件 geo #geo地理信息定位# =============================================================================from pyecharts import Map districts = ['運河區', '新華區', '泊頭市', '任丘市', '黃驊市', '河間市', '滄縣', '青縣', '東光縣', '海興縣', '鹽山縣', '肅寧縣', '南皮縣', '吳橋縣', '獻縣', '孟村回族自治縣'] areas = [109.92, 109.47, 1006.5, 1023.0, 1544.7, 1333.0, 1104.0, 968.0, 730.0, 915.1, 796.0, 525.0, 794.0, 600.0, 1191.0, 387.0] map_1 = Map("滄州市圖例-各區面積", width=1200, height=600) map_1.add("", districts, areas, maptype='滄州', is_visualmap=True, visual_range=[min(areas), max(areas)],visual_text_color='#000', is_map_symbol_show=False, is_label_show=True) map_1.render()from pyecharts import Mapvalue = [155, 10, 66, 78] attr = ["福建", "山東", "北京", "上海"] map = Map("全國地圖示例", width=1200, height=600) map.add("", attr, value, maptype='china', is_label_show=True) map.render()value = [95.1, 23.2, 43.3, 66.4, 88.5] attr= ["China", "Canada", "Brazil", "Russia", "United States"] map = Map("世界地圖示例", width=1200, height=600) map.add("", attr, value, maptype="world", is_visualmap=True,visual_text_color='#000') map.render()value = [155, 10, 66, 78] attr = ["福建", "山東", "北京", "上海"] map = Map("全國地圖示例", width=1200, height=600) map.add("", attr, value, maptype='china',is_visualmap=True, is_piecewise=True,visual_text_color="#000",visual_range_text=["", ""],pieces=[{"max": 160, "min": 70, "label": "高數值"},{"max": 69, "min": 0, "label": "低數值"},]) map.render()# ============================================================================= from pyecharts import Barbar = Bar("我的第一個圖表", "這里是副標題") bar.use_theme('dark') bar.add("服裝", ["襯衫", "羊毛衫", "雪紡衫", "褲子", "高跟鞋", "襪子"], [5, 20, 36, 10, 75, 90]) # bar.print_echarts_options() # 該行只為了打印配置項,方便調試時使用 bar.render(r'C:\Users\A3\Desktop\test1.html') # 生成本地 HTML 文件# ============================================================================= from pyecharts import Bar, Line from pyecharts.engine import create_default_environment bar = Bar("我的第一個圖表", "這里是副標題") bar.add("服裝", ["襯衫", "羊毛衫", "雪紡衫", "褲子", "高跟鞋", "襪子"], [5, 20, 36, 10, 75, 90])line = Line("我的第一個圖表", "這里是副標題") line.add("服裝", ["襯衫", "羊毛衫", "雪紡衫", "褲子", "高跟鞋", "襪子"], [5, 20, 36, 10, 75, 90])env = create_default_environment("html") # 為渲染創建一個默認配置環境 # create_default_environment(filet_ype) # file_type: 'html', 'svg', 'png', 'jpeg', 'gif' or 'pdf'env.render_chart_to_file(bar, path='bar.html') env.render_chart_to_file(line, path='line.html') # ============================================================================= from pyecharts import Barattr = ["{}月".format(i) for i in range(1, 13)] v1 = [2.0, 4.9, 7.0, 23.2, 25.6, 76.7, 135.6, 162.2, 32.6, 20.0, 6.4, 3.3] v2 = [2.6, 5.9, 9.0, 26.4, 28.7, 70.7, 175.6, 182.2, 48.7, 18.8, 6.0, 2.3] bar = Bar("柱狀圖示例") bar.add("蒸發量", attr, v1, mark_line=["average"], mark_point=["max", "min"]) bar.add("降水量", attr, v2, mark_line=["average"], mark_point=["max", "min"]) bar.render()from pyecharts import Geodata = [("北京", 15), ("杭州", 20), ("大同", 5),("深圳", 2), ("青島", 2), ("上海", 5), ("南京", 5), ("呼和浩特", 5),("太原", 5), ("嘉興", 5), ("廣州", 5), ("深圳", 5), ("合肥", 5), ("紹興", 5), ("惠州", 5), ("朔州", 5)] geo = Geo("既然我們一起走了這么多 ", "那希望能用同一種顏色填滿你心里的每一個角落", title_color="#fff",title_pos="center", width=1200,height=600, background_color='#404a59') attr, value = geo.cast(data) geo.add("", attr, value, type="effectScatter", is_random=True, effect_scale=5) geo.render(r'C:\Users\A3\Desktop\test.html') geo.render(path='snapshot.gif')# ============================================================================= from pyecharts import GeoLines, Stylestyle = Style(title_top="#fff",title_pos = "center",width=1200,height=600,background_color="#404a59" )data_beijing = [["北京", "杭州"],["北京", "青島"],["北京", "長沙"],["北京", "上海"],["北京", "成都"],["北京", "吉林"],["北京", "大理"],["北京", "深圳"],["北京", "福州"],["北京", "武漢"] ]style_geo = style.add(is_label_show=True,line_curve=0.2,line_opacity=0.6,legend_text_color="#eee",legend_pos="right",geo_effect_symbol="plane",geo_effect_symbolsize=15,label_color=['#a6c84c', '#ffa022', '#46bee9'],label_pos="right",label_formatter="{b}",label_text_color="#eee", )geolines = GeoLines("從哪里相識,就從哪里散場", **style.init_style) geolines.add("從北京開始", data_beijing, **style_geo) geolines.render(r'C:\Users\A3\Desktop\test1.html') # ============================================================================= from pyecharts import GeoLines, Styledata_guangzhou = [["廣州", "上海", 10],["廣州", "北京", 20],["廣州", "南京", 30],["廣州", "重慶", 40],["廣州", "蘭州", 50],["廣州", "杭州", 60], ] lines = GeoLines("GeoLines 示例", **style.init_style) lines.add("從廣州出發", data_guangzhou, tooltip_formatter="{a} : {c}", **style_geo) lines.render(r'C:\Users\A3\Desktop\test2.html') # ===========================================================================總結
以上是生活随笔為你收集整理的【Python】Pyecharts数据可视化模块练习的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 【Python】KNN简单的判别预测
- 下一篇: 【Python】写文件个性化设置模块Py