主成分分析(Principal components analysis)
最大方差解釋
1. 問題
真實的訓練數據總是存在各種各樣的問題:
1、 比如拿到一個汽車的樣本,里面既有以“千米/每小時”度量的最大速度特征,也有“英里/小時”的最大速度特征,顯然這兩個特征有一個多余。
2、 拿到一個數學系的本科生期末考試成績單,里面有三列,一列是對數學的興趣程度,一列是復習時間,還有一列是考試成績。我們知道要學好數學,需要有濃厚的興趣,所以第二項與第一項強相關,第三項和第二項也是強相關。那是不是可以合并第一項和第二項呢?
3、 拿到一個樣本,特征非常多,而樣例特別少,這樣用回歸去直接擬合非常困難,容易過度擬合。比如北京的房價:假設房子的特征是(大小、位置、朝向、是否學區房、建造年代、是否二手、層數、所在層數),搞了這么多特征,結果只有不到十個房子的樣例。要擬合房子特征->房價的這么多特征,就會造成過度擬合。
4、 這個與第二個有點類似,假設在IR中我們建立的文檔-詞項矩陣中,有兩個詞項為“learn”和“study”,在傳統的向量空間模型中,認為兩者獨立。然而從語義的角度來講,兩者是相似的,而且兩者出現頻率也類似,是不是可以合成為一個特征呢?
5、 在信號傳輸過程中,由于信道不是理想的,信道另一端收到的信號會有噪音擾動,那么怎么濾去這些噪音呢?
回顧我們之前介紹的《模型選擇和規則化》,里面談到的特征選擇的問題。但在那篇中要剔除的特征主要是和類標簽無關的特征。比如“學生
總結
以上是生活随笔為你收集整理的主成分分析(Principal components analysis)的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 支持向量机SVM原理
- 下一篇: 规则化和模型选择(Regularizat