【Paper】2011_Distributed fault detection for interconnected second-order systems
Shames I, Teixeira A M H, Sandberg H, et al. Distributed fault detection for interconnected second-order systems[J]. Automatica, 2011, 47(12): 2757-2764.
文章目錄
- 1 Introduction
- 2 Problem formulation
- 3 Model-based fault detection preliminaries
- 4 FDI for networked systems
- 4.1 UIO for position distributed control
- 4.2 UIO for position-velocity distributed control
- 4.3 Faulty node removal
- 5 Application to practical examples
- 5.1 FDI in power networks
- 5.2 FDI in formations of mobile agents
- 5.3 Complexity of the FDI method
- 6 Concluding remarks and future directions
| vi(t)v_i(t)vi?(t) | a scalar known external input | |
| ξi(t),ζi(t)\xi_i(t), \zeta_i(t)ξi?(t),ζi?(t) | scalar states | |
| ui(t)u_i(t)ui?(t) | control | |
| fξk(t),fζk(t)f_{\xi k}(t), f_{\zeta k}(t)fξk?(t),fζk?(t) | fault signals |
1 Introduction
2 Problem formulation
ξ˙i=ζi(t)ζ˙i=ui(t)+vi(t)(1)\begin{aligned} \dot{\xi}_i &= \zeta_i(t) \\ \dot{\zeta}_i &= u_i(t) + v_i(t) \\ \end{aligned}\tag{1}ξ˙?i?ζ˙?i??=ζi?(t)=ui?(t)+vi?(t)?(1)
the linear control law
ui(t)=?κiζi(t)+∑j∈Niwij[(ξj(t)?ξi(t))+γ(ζj(t)?ζi(t))](2)u_i(t) = - \kappa_i \zeta_i(t) + \sum_{j \in N_i} w_{ij} [(\xi_j(t)-\xi_i(t)) + \gamma (\zeta_j(t) - \zeta_i(t))] \tag{2}ui?(t)=?κi?ζi?(t)+j∈Ni?∑?wij?[(ξj?(t)?ξi?(t))+γ(ζj?(t)?ζi?(t))](2)
發(fā)生故障時,系統(tǒng)的表述為
ξ˙i=ζi(t)+fξk(t)ζ˙i=ui(t)+vi(t)+fζk(t)\begin{aligned} \dot{\xi}_i &= \zeta_i(t) + f_{\xi k}(t)\\ \dot{\zeta}_i &= u_i(t) + v_i(t) + f_{\zeta k}(t) \\ \end{aligned}ξ˙?i?ζ˙?i??=ζi?(t)+fξk?(t)=ui?(t)+vi?(t)+fζk?(t)?
The closed-loop dynamis of the networked system in the presence of faults can be rewritten as
x˙(t)=Ax(t)+Bv(t)+Bff(t)y(t)=Cx(t)(3)\begin{aligned} \dot{x} (t) &= Ax(t) + B v(t) + B_f f(t) \\ y(t) &= C x(t) \\ \end{aligned}\tag{3}x˙(t)y(t)?=Ax(t)+Bv(t)+Bf?f(t)=Cx(t)?(3)
3 Model-based fault detection preliminaries
Consider the linear fault-free system under the influence of an unknown input d(t)∈Rm?1d(t) \in \R^{m?1}d(t)∈Rm?1 described by
x˙(t)=Ax(t)+Bv(t)+Ed(t)y(t)=Cx(t)(5)\begin{aligned} \dot{x} (t) &= A x(t) + B v(t) + E d(t) \\ y(t) &= C x(t) \\ \end{aligned}\tag{5}x˙(t)y(t)?=Ax(t)+Bv(t)+Ed(t)=Cx(t)?(5)
The system in presence of faults is given by
x˙(t)=Ax(t)+Bv(t)+Ed(t)+Bff(t)y(t)=Cx(t)(6)\begin{aligned} \dot{x} (t) &= A x(t) + B v(t) + E d(t) +B_f f(t) \\ y(t) &= C x(t) \\ \end{aligned}\tag{6}x˙(t)y(t)?=Ax(t)+Bv(t)+Ed(t)+Bf?f(t)=Cx(t)?(6)
A full-order observer for the fault-free system (5) is described by:
z˙(t)=Fz(t)+TBv(t)+Ky(t)x^(t)=z(t)+Hy(t)(7)\begin{aligned} \dot{z} (t) &= F z(t) + T B v(t) + K y(t) \\ \hat{x}(t) &= z(t) + H y(t) \\ \end{aligned}\tag{7}z˙(t)x^(t)?=Fz(t)+TBv(t)+Ky(t)=z(t)+Hy(t)?(7)
4 FDI for networked systems
4.1 UIO for position distributed control
Consider the networked system introduced in Section 2 with the following control law
miui(t)=?diζi(t)+∑j∈Niwij(ξj(t)?ξi(t))(14)m_i u_i (t) = - d_i \zeta_i(t) + \sum_{j \in N_i} w_{ij} (\xi_j(t) - \xi_i(t)) \tag{14}mi?ui?(t)=?di?ζi?(t)+j∈Ni?∑?wij?(ξj?(t)?ξi?(t))(14)
Note that if the graph is not connected, the networked system (16) can be decomposed into several decoupled subsystems, each corresponding to a connected subset of the network. The conclusion of Theorem 1 then applies to each subsystem.
4.2 UIO for position-velocity distributed control
Now we consider the existence of UIOs for the distributed control law:
ui(t)=∑j∈Niwij[(ξj(t)?ξi(t))+γ(ζj(t)?ζi(t))](20)u_i (t) = \sum_{j \in N_i} w_{ij} [(\xi_j(t) - \xi_i(t)) + \gamma (\zeta_j(t) - \zeta_i(t)) ] \tag{20}ui?(t)=j∈Ni?∑?wij?[(ξj?(t)?ξi?(t))+γ(ζj?(t)?ζi?(t))](20)
4.3 Faulty node removal
5 Application to practical examples
5.1 FDI in power networks
5.2 FDI in formations of mobile agents
5.3 Complexity of the FDI method
6 Concluding remarks and future directions
總結(jié)
以上是生活随笔為你收集整理的【Paper】2011_Distributed fault detection for interconnected second-order systems的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 【Paper】2020_GrHDP So
- 下一篇: 【Paper】2021_领导-跟随多智能