UA OPTI570 量子力学21 Atom Trapping
UA OPTI570 量子力學21 Atom Trapping
- 1-D Gaussian Laser Beam
- Red-detuned Laser
- 3-D Q.H.O. Approximation
 
討論atom trapping一般用下面兩種設定:
在實驗室中可以用Off-resonance laser light做atom trapping的實驗,Off-resonance laser light的好處是幾乎可以忽略H-field,只保留oscillating E-field,于是可以觀測到electric dipole interaction energy:?d?E-\textbf d \cdot \textbf E?d?E,其中d\textbf dd是induced dipole moment,E\textbf EE是laser E-field。Off-resonant的重要特征是laser detuning Δ=wlaser?watom\Delta=w_{laser}-w_{atom}Δ=wlaser??watom?,這里watomw_{atom}watom?表示resonant frequency,如果Δ<0\Delta<0Δ<0,稱這種情況為red detuning(因為atom frequency向紅光方向偏移),這時可以構造potential well for atom(如下圖)
 如果Δ>0\Delta>0Δ>0,稱這種情況為blue detuning,這時可以構造potential barrier for atom(potential well的形狀上下翻轉一下就是barrier)。用UUU表示勢能,在上述實驗設定中,
 U∝I(x,y,z)ΔU \propto \frac{I(x,y,z)}{\Delta}U∝ΔI(x,y,z)?
其中III是spatially dependent laser beam indensity。
1-D Gaussian Laser Beam
考慮在z^\hat zz^上傳播的Gaussian Laser Beam,假設
 I(x,y,z)=I(x)=I0e?2x2d2I(x,y,z)=I(x)=I_0e^{-\frac{2x^2}{d^2}}I(x,y,z)=I(x)=I0?e?d22x2?
則勢能滿足
 U(x)=?U0e?2x2d2,U0∝I0ΔU(x) =-U_0e^{-\frac{2x^2}{d^2}},U_0\propto \frac{I_0}{\Delta}U(x)=?U0?e?d22x2?,U0?∝ΔI0??
這是一個Gaussian Potential Well,取x=0x=0x=0為零勢點,也就是
 U(x)=U0?U0e?2x2d2U(x) = U_0-U_0e^{-\frac{2x^2}{d^2}}U(x)=U0??U0?e?d22x2?
考慮一個有趣的問題:怎么構造一個量子諧振子,它的勢能可以近似U(x)U(x)U(x)?簡單設想一下,Q.H.O的勢能關于xxx是二次的,在這個勢能阱的底部可以很好地近似,但無法近似勢能阱的頂部,也就是說Q.H.O近似Gaussian勢能阱對那些低能量粒子才會有比較好的效果。
U(x)=U0(1?e?2x2d2)=U0[1?(∑n=0+∞(?1)n2nx2nn!d2n)]=U0∑n=1+∞(?1)n?12nx2nn!d2n\begin{aligned}U(x) & = U_0(1-e^{-\frac{2x^2}{d^2}}) \\ & = U_0 \left[ 1 - \left(\sum_{n=0}^{+\infty}(-1)^n \frac{2^nx^{2n}}{n! d^{2n}} \right)\right] \\ & = U_0 \sum_{n=1}^{+\infty}(-1)^{n-1}\frac{2^nx^{2n}}{n! d^{2n}}\end{aligned}U(x)?=U0?(1?e?d22x2?)=U0?[1?(n=0∑+∞?(?1)nn!d2n2nx2n?)]=U0?n=1∑+∞?(?1)n?1n!d2n2nx2n??
當xxx足夠小時,可以用一階展開近似,
 U(x)≈2U0x2d2U(x) \approx \frac{2U_0x^2}{d^2}U(x)≈d22U0?x2?
用能量守恒
 12mwx2=2U0x2d2w=4U0md2\frac{1}{2}mwx^2=\frac{2U_0x^2}{d^2} \\ w = \sqrt{\frac{4U_0}{md^2}}21?mwx2=d22U0?x2?w=md24U0???
因此低能量的粒子可以用頻率為www的Q.H.O近似。
例 Consider atom in ground state ∣?0?|\phi_0 \rangle∣?0?? of red-detuned Gaussian laser beam trap, assuming Q.H.O is good approximation. Let x=0x=0x=0 be the center of the Q.H.O and the Gaussian laser beam trap. Let σ=?mw\sigma=\sqrt{\frac{\hbar}{mw}}σ=mw??? be the Q.H.O length scale. Given w=4U0md2w = \sqrt{\frac{4U_0}{md^2}}w=md24U0???,
 σ2=?d2mU0\sigma^2 = \frac{\hbar d}{2 \sqrt{mU_0}}σ2=2mU0???d? Assume the wave function corresponding to the ground state is
 ?0(x)=(πσ2)?1/4e?x2σ2\phi_0(x) = (\pi \sigma^2)^{-1/4}e^{-\frac{x^2}{\sigma^2}}?0?(x)=(πσ2)?1/4e?σ2x2? In the following figure, the y-axis represents the potential energy devided by U0U_0U0? and the x-axis represents x/σx/\sigmax/σ. The red curve is U(x)U(x)U(x) and the blue curve shows the Q.H.O approximation.
If the mirror bumped at t=0t=0t=0, U(x)U(x)U(x) becomes U(x?b)U(x-b)U(x?b) and then the ground state moves to a coherent state
 D(α0′)∣ψ0?=∣α0′?,α0′=?b2σD(\alpha_0')|\psi_0 \rangle = |\alpha_0' \rangle,\alpha_0'=-\frac{b}{\sqrt{2} \sigma}D(α0′?)∣ψ0??=∣α0′??,α0′?=?2?σb?
such that
 A^∣α0′?=α0′∣α0′?\hat A |\alpha_0' \rangle = \alpha_0' |\alpha_0 ' \rangleA^∣α0′??=α0′?∣α0′??
Let A^∣α′(t)?=α′(t)∣α′(t)?\hat A |\alpha'(t) \rangle = \alpha'(t) |\alpha'(t) \rangleA^∣α′(t)?=α′(t)∣α′(t)?, using the Schroedinger time-evolving operator
 α′(t)=α0′e?iwt=?b2σe?iwt\alpha'(t)=\alpha_0'e^{-iwt} = -\frac{b}{\sqrt{2} \sigma}e^{-iwt} α′(t)=α0′?e?iwt=?2?σb?e?iwt
The maximum magnitude of momentum is given by
 ∣α′(t)∣=σPmax2?,Pmax=?bσ2|\alpha'(t)|=\frac{\sigma P_{max}}{\sqrt{2} \hbar}, P_{max}=\frac{\hbar b}{\sigma^2}∣α′(t)∣=2??σPmax??,Pmax?=σ2?b?
But how to transform back to the ground state?
Red-detuned Laser
考慮
 I(x,y,z)=I0e?2x2d2e?2y2d2cos?2(kz)I(x,y,z)=I_0e^{-\frac{2x^2}{d^2}}e^{-\frac{2y^2}{d^2}}\cos^2(kz)I(x,y,z)=I0?e?d22x2?e?d22y2?cos2(kz)
其中k=2π/λk=2 \pi /\lambdak=2π/λ,沿z^\hat zz^方向,假設x=y=0x=y=0x=y=0,則
 I(z)=I0cos?2(kz),U(z)∝I0Δcos?2(kz)I(z) = I_0 \cos^2(kz), U(z) \propto \frac{I_0}{\Delta}\cos^2(kz)I(z)=I0?cos2(kz),U(z)∝ΔI0??cos2(kz)
假設
 U(z)/U0=?cos?2(kz),U0∝I0/ΔU(z)/U_0 = -\cos^2(kz),U_0 \propto I_0 / \DeltaU(z)/U0?=?cos2(kz),U0?∝I0?/Δ
U(z)/U0U(z)/U_0U(z)/U0?關于kzkzkz的圖像如下,
 
取z=0z=0z=0為零勢點,當zzz足夠小時
 U(z)=?U0cos?2(kz)+U0≈U0k2z2U(z)=-U_0\cos^2(kz)+U_0 \approx U_0 k^2 z^2U(z)=?U0?cos2(kz)+U0?≈U0?k2z2
根據能量守恒,
 U0k2z2=12mwzz2wz=2π2U0mλ2U_0 k^2 z^2 = \frac{1}{2}mw_z z^2 \\ w_z = 2 \pi \sqrt{\frac{2U_0}{m\lambda^2}}U0?k2z2=21?mwz?z2wz?=2πmλ22U0???
用Q.H.O近似U(z)U(z)U(z),能級為
 En=?wz(n+1/2)≈2π2U0mλ2?(n+1/2)E_n=\hbar w_z(n+1/2) \approx 2 \pi \sqrt{\frac{2U_0}{m\lambda^2}} \hbar (n+1/2)En?=?wz?(n+1/2)≈2πmλ22U0????(n+1/2)
這個近似成立的條件是
 U0?wz>>1\frac{U_0}{\hbar w_z} >> 1?wz?U0??>>1
也就是不能只有幾個低能級的狀態可以被近似。
3-D Q.H.O. Approximation
考慮用3-D Q.H.O.近似3-D Gaussian Laser Beam Trap,假設Laser Beam關于zzz軸對稱,則Q.H.O.的eigen-energy滿足
 E=Enx,ny,nz=?wxy(nx+ny+1)+?wz(nz+1/2)E=E_{n_x,n_y,n_z}=\hbar w_{xy}(n_x+n_y+1)+\hbar w_z(n_z+1/2)E=Enx?,ny?,nz??=?wxy?(nx?+ny?+1)+?wz?(nz?+1/2)
記對應的energy eigenstate為∣nx,ny,nz?|n_x,n_y,n_z \rangle∣nx?,ny?,nz??,Ground state為∣nx=0,ny=0,nz=0?|n_x=0,n_y=0,n_z=0\rangle∣nx?=0,ny?=0,nz?=0?。When t=0t=0t=0, atom in ground state, shortly the mirror bumped and the y^\hat yy^? direction got shifted of +1μ+1 \mu+1μm. For the y^\hat yy^? direction,
 αy=12(?y?σy+iσy?Py??)=12?1μmσy\alpha_y = \frac{1}{\sqrt{2}} \left( \frac{\langle y \rangle}{\sigma_y}+\frac{i \sigma_y \langle P_y \rangle}{\hbar} \right)=\frac{1}{\sqrt{2}} \frac{-1 \mu m}{\sigma_y}αy?=2?1?(σy??y??+?iσy??Py???)=2?1?σy??1μm?
Assume σy=0.25μm\sigma_y =0.25 \mu mσy?=0.25μm, α=?2.8\alpha = -2.8α=?2.8. And ?Hy??wy=∣?2.8∣2+1/2=8.5\frac{\langle H_y \rangle}{\hbar w_y}=|-2.8|^2+1/2=8.5?wy??Hy???=∣?2.8∣2+1/2=8.5. Now we know the initial state of the atom is
 ∣nx=0,ny=?2.8,nz=0?=∣ψ(0)?|n_x = 0,n_y = -2.8,n_z=0 \rangle = | \psi(0) \rangle∣nx?=0,ny?=?2.8,nz?=0?=∣ψ(0)?
Applying the Schroedinger time-evolution operator,
 ∣ψ(t)?=∣nx=0,ny=?2.8e?iwt,nz=0?|\psi(t) \rangle = |n_x=0 ,n_y = -2.8 e^{-iwt},n_z=0 \rangle∣ψ(t)?=∣nx?=0,ny?=?2.8e?iwt,nz?=0?
總結
以上是生活随笔為你收集整理的UA OPTI570 量子力学21 Atom Trapping的全部內容,希望文章能夠幫你解決所遇到的問題。
 
                            
                        - 上一篇: 电动力学每日一题 2021/10/13
- 下一篇: 电动力学每日一题 2021/10/14
