【Python-ML】SKlearn库决策树(DecisionRegression) 使用
生活随笔
收集整理的這篇文章主要介紹了
【Python-ML】SKlearn库决策树(DecisionRegression) 使用
小編覺得挺不錯(cuò)的,現(xiàn)在分享給大家,幫大家做個(gè)參考.
# -*- coding: utf-8 -*-
'''
Created on 2018年1月15日
@author: Jason.F
@summary: Scikit-Learn庫決策樹算法
'''from sklearn import datasets
import numpy as np
from sklearn.cross_validation import train_test_split
from sklearn.preprocessing import StandardScaler
from matplotlib.colors import ListedColormap
import matplotlib.pyplot as plt
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score
from sklearn.tree import DecisionTreeClassifier
from sklearn.tree import export_graphviz
from sklearn.ensemble import RandomForestClassifier
#決策邊界函數(shù)
def plot_decision_regions(X,y,classifier,test_idx=None,resolution=0.02):# 設(shè)置標(biāo)記點(diǎn)和顏色markers = ('s','x','o','^','v')colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan')cmap = ListedColormap(colors[:len(np.unique(y))])# 繪制決策面x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution),np.arange(x2_min, x2_max, resolution))Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T)Z = Z.reshape(xx1.shape)plt.contourf(xx1, xx2, Z, alpha=0.4, cmap=cmap)plt.xlim(xx1.min(), xx1.max())plt.ylim(xx2.min(), xx2.max())#繪制所有樣本X_test,y_test=X[test_idx,:],y[test_idx]for idx,cl in enumerate(np.unique(y)):plt.scatter(x=X[y==cl,0],y=X[y==cl,1],alpha=0.8,c=cmap(idx),marker=markers[idx],label=cl)#高亮預(yù)測樣本if test_idx:X_test,y_test =X[test_idx,:],y[test_idx]plt.scatter(X_test[:,0],X_test[:,1],c='',alpha=1.0,linewidths=1,marker='o',s=55,label='test set')
#數(shù)據(jù)導(dǎo)入
iris=datasets.load_iris()
X=iris.data[:,[2,3]]
y=iris.target
print (np.unique(y))
#訓(xùn)練集和測試集劃分
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.3,random_state=0)
#標(biāo)準(zhǔn)化
sc=StandardScaler()
sc.fit(X_train)#計(jì)算樣本的均值和標(biāo)準(zhǔn)差
X_train_std=sc.transform(X_train)
X_test_std=sc.transform(X_test)
#決策樹模型,信息增益和純度(熵、基尼系統(tǒng)、誤分類率)
#深度越大,容易產(chǎn)生過擬合,通過剪枝來解決
tree=DecisionTreeClassifier(criterion='entropy',max_depth=3,random_state=0)
tree.fit(X_train_std,y_train)
#隨機(jī)森林,集成多個(gè)弱學(xué)習(xí)器成魯棒性強(qiáng)學(xué)習(xí)器
#參數(shù):n_jobs處理器內(nèi)核數(shù)量,n_estimators集成的單顆決策樹數(shù)量
#forest=RandomForestClassifier(criterion='entropy',n_estimators=10,n_jobs=2,random_state=1)
#forest.fit(X_train_std,y_train)
#模型預(yù)測
y_pred=tree.predict(X_test_std)
print ('Accuracy:%.2f' %accuracy_score(y_test,y_pred))#準(zhǔn)確率
#繪制決策邊界
X_combined_std=np.vstack((X_train_std,X_test_std))
y_combined=np.hstack((y_train,y_test))
plot_decision_regions(X=X_combined_std, y=y_combined, classifier=tree, test_idx=range(105,150))
plt.xlabel('petal length[cm]')
plt.ylabel('petal width[cm]')
plt.legend(loc='upper left')
plt.show()
#導(dǎo)出決策樹到dot格式
export_graphviz(tree,out_file='tree.dot',feature_names=['petal length','petal width'])
#下載http://www.graphviz.org/download/
#dot轉(zhuǎn)換為png命令:dot -Tpng tree.dot -o tree.png
#windows下安裝graphviz參考;http://blog.csdn.net/lanchunhui/article/details/49472949#觀察熵、基尼、誤分類率對純度的影響
def gini(p):return p*(1-p)+(1-p)*(1-(1-p))
def entropy(p):return -p*np.log2(p)-(1-p)*np.log2(1-p)
def error(p):return 1-np.max([p,1-p])
x=np.arange(0.0,1.0,0.01)
ent=[entropy(p) if p !=0 else None for p in x]#求熵
sc_ent=[e*0.5 if e else None for e in ent ]#熵縮放
err=[error(i) for i in x]
fig=plt.figure()
ax=plt.subplot(111)
for i,lab,ls,c in zip([ent,sc_ent,gini(x),err],\['Entropy','Entropy(scaled)','Gini Impurity','Misclassification Error'],\['-','-','--','-.'],\['black','lightgray','red','green']):line=ax.plot(x,i,label=lab,linestyle=ls,lw=2,color=c)
ax.legend(loc='upper center',bbox_to_anchor=(0.5,1.15),ncol=3,fancybox=True,shadow=False)
ax.axhline(y=0.5,linewidth=1,color='k',linestyle='--')
ax.axhline(y=1.0,linewidth=1,color='k',linestyle='--')
plt.ylim([0,1.1])
plt.xlabel('p(i=1)')
plt.ylabel('Impurity Index')
plt.show()
決策分類結(jié)果:
決策分類GraphViz圖:
隨機(jī)森林結(jié)果:
信息增益:熵、基尼、誤分類率對純度的影響:
總結(jié)
以上是生活随笔為你收集整理的【Python-ML】SKlearn库决策树(DecisionRegression) 使用的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 【Python-ML】SKlearn库支
- 下一篇: 【Python-ML】SKlearn库K