【Python-ML】SKlearn库层次聚类凝聚AgglomerativeClustering模型
生活随笔
收集整理的這篇文章主要介紹了
【Python-ML】SKlearn库层次聚类凝聚AgglomerativeClustering模型
小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
# -*- coding: utf-8 -*-
'''
Created on 2018年1月25日
@author: Jason.F
@summary: 無監督聚類學習-層次聚類(hierarchical clustering),自下向上的凝聚和自頂向下的分裂兩種方法。
'''
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from scipy.spatial.distance import pdist,squareform
from scipy.cluster.hierarchy import linkage
from scipy.cluster.hierarchy import dendrogram
from sklearn.cluster import AgglomerativeClustering
np.random.seed(123)
variables = ['X','Y','Z']
labels=['ID_0','ID_1','ID_2','ID_3','ID_4']
X=np.random.random_sample([5,3])*10
#層次聚類樹
df = pd.DataFrame(X,columns=variables,index=labels)
print (df)
#計算距離關聯矩陣,兩兩樣本間的歐式距離
#row_dist = pd.DataFrame(squareform(pdist(df,metric='euclidean')),columns=labels,index=labels)
#print (row_dist)
#print (help(linkage))
row_clusters = linkage(pdist(df,metric='euclidean'),method='complete')#使用抽秘籍距離矩陣
#row_clusters = linkage(df.values,method='complete',metric='euclidean')
print (pd.DataFrame(row_clusters,columns=['row label1','row label2','distance','no. of items in clust.'],index=['cluster %d'%(i+1) for i in range(row_clusters.shape[0])]))
#層次聚類樹
row_dendr = dendrogram(row_clusters,labels=labels)
plt.tight_layout()
plt.ylabel('Euclidean distance')
plt.show()
#層次聚類熱度圖
fig =plt.figure(figsize=(8,8))
axd =fig.add_axes([0.09,0.1,0.2,0.6])
row_dendr = dendrogram(row_clusters,orientation='right')
df_rowclust = df.ix[row_dendr['leaves'][::-1]]
axm = fig.add_axes([0.23,0.1,0.6,0.6])
cax = axm.matshow(df_rowclust,interpolation='nearest',cmap='hot_r')
axd.set_xticks([])
axd.set_yticks([])
for i in axd.spines.values():i.set_visible(False)
fig.colorbar(cax)
axm.set_xticklabels(['']+list(df_rowclust.columns))
axm.set_yticklabels(['']+list(df_rowclust.index))
plt.show()#凝聚層次聚類,應用對層次聚類樹剪枝
ac=AgglomerativeClustering(n_clusters=2,affinity='euclidean',linkage='complete')
labels = ac.fit_predict(X)
print ('cluster labels:%s'%labels)
結果:
X Y Z ID_0 6.964692 2.861393 2.268515 ID_1 5.513148 7.194690 4.231065 ID_2 9.807642 6.848297 4.809319 ID_3 3.921175 3.431780 7.290497 ID_4 4.385722 0.596779 3.980443row label1 row label2 distance no. of items in clust. cluster 1 0.0 4.0 3.835396 2.0 cluster 2 1.0 2.0 4.347073 2.0 cluster 3 3.0 5.0 5.899885 3.0 cluster 4 6.0 7.0 8.316594 5.0 cluster labels:[0 1 1 0 0]
總結
以上是生活随笔為你收集整理的【Python-ML】SKlearn库层次聚类凝聚AgglomerativeClustering模型的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 【Python-ML】SKlearn库原
- 下一篇: 【Python-ML】SKlearn库密