panda.read_csv的常用参数说明
pandas.read_csv
原型:
pandas.read_csv(filepath_or_buffer, sep=', ', delimiter=None, header='infer', names=None, index_col=None, usecols=None, squeeze=False, prefix=None, mangle_dupe_cols=True, dtype=None, engine=None, converters=None, true_values=None, false_values=None, skipinitialspace=False, skiprows=None, nrows=None, na_values=None, keep_default_na=True, na_filter=True, verbose=False, skip_blank_lines=True, parse_dates=False, infer_datetime_format=False, keep_date_col=False, date_parser=None, dayfirst=False, iterator=False, chunksize=None, compression='infer', thousands=None, decimal='.', lineterminator=None, quotechar='"', quoting=0, escapechar=None, comment=None, encoding=None, dialect=None, tupleize_cols=False, error_bad_lines=True, warn_bad_lines=True, skipfooter=0, skip_footer=0, doublequote=True, delim_whitespace=False, as_recarray=False, compact_ints=False, use_unsigned=False, low_memory=True, buffer_lines=None, memory_map=False, float_precision=None)?
參數很多,下面就常用的參數給出說明,詳細請參考panda文檔?:
?
filepath_or_buffer :?要讀取的csv文件的URL,本地或者遠程文件均可。
header?: int or list of ints, default ‘infer’?
Row number(s) to use as the column names, and the start of the data. Default behavior is as if set to 0 if no?names?passed, otherwise?None. Explicitly pass?header=0?to be able to replace existing? names. The header can be a list of integers that specify row locations for a multi-index on the columns e.g. [0,1,3]. Intervening rows that are not specified will be skipped (e.g. 2 in this example is skipped). Note that this parameter ignores commented lines and empty lines if?skip_blank_lines=True, so header=0 denotes the first line of data rather than the first line of the file.
names?: array-like, default None
List of column names to use. If file contains no header row, then you should explicitly pass header=None. Duplicates in this list are not allowed unless mangle_dupe_cols=True, which is the default.
mangle_dupe_cols?: boolean, default True
Duplicate columns will be specified as ‘X.0’...’X.N’, rather than ‘X’...’X’. Passing in False will cause data to be overwritten if there are duplicate names in the columns.
skip_blank_lines?: boolean, default True
If True, skip over blank lines rather than interpreting as NaN values
?
返回值:Read CSV (comma-separated) file into DataFrame
?
轉載于:https://www.cnblogs.com/zhuangliu/p/6374853.html
總結
以上是生活随笔為你收集整理的panda.read_csv的常用参数说明的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 用户看法调查结果及分析(四)
- 下一篇: 2017新年伊始