# 1 安裝顯卡驅動 1.1 BIOS禁用Secure Boot 打開服務器電源,按F2進入Bios設置 在System BIOS ->System Security -> Secure Boot,選擇Disabled,保存退出 1.2 禁用第三方驅動Nouveau $ sudo apt-get purge nvidia*
# 編輯blacklist.conf
$ sudo nano /etc/modprobe.d/blacklist.conf
# 在blacklist.conf的文件的最后手動添加:blacklist nouveau
# 更新內核
$ sudo update-initramfs -u
# 重啟
reboot
# 重啟后驗證nouveau是否被禁用,如果下列語句無輸出,表示禁用成功
lsmod | grep nouveau
1.3 官網下載驅動 官網地址:https://www.geforce.cn/drivers 選擇自己的顯卡型號和操作系統后,下載對應的驅動(現在的版本是:430.34) 1.4 安裝驅動 重啟服務器,進入命令行界面進行安裝。服務器重啟進入到用戶登錄界面時,按CTRL+ALT+F2(F2~F6均可,對應不同的5個終端,F1是圖形界面)進入命令行界面 進入驅動的下載目錄,開始安裝 # 安裝gcc make
$ sudo apt-get install gcc make g++
# 給文件增加可執行權限
$ sudo chmod a+x NVIDIA-Linux-x86_64-430.34.run
# 開始安裝,后面的那個參數表示不安裝OPENGL
$ sudo ./NVIDIA-Linux-x86_64-430.34.run --no-opengl-files
# 安裝完成后,重啟
$ reboot
# 驗證是否安裝成功
$ nvidia-smi
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 430.34 Driver Version: 430.34 CUDA Version: 10.1 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 GeForce RTX 208... Off | 00000000:02:00.0 Off | N/A |
| 18% 61C P0 67W / 250W | 0MiB / 11019MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 1 GeForce RTX 208... Off | 00000000:04:00.0 Off | N/A |
| 27% 64C P0 1W / 250W | 0MiB / 11019MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
# 2 安裝CUDA 10.1 2.1 下載CUDA安裝文件 進入官網,選擇對應的操作系統版本,建議下載runfile(下載過deb,但是安裝失敗) 2.2 執行安裝 # 開始安裝
$ sudo sh cuda_10.1.168_418.67_linux.run
# 添加環境變量
$ sudo nano /etc/profile
# 添加以下文本到profile的最后
export CUDA_HOME=/usr/local/cuda
export PATH=$PATH:$CUDA_HOME/bin
export LD_LIBRARY_PATH=/usr/local/cuda-10.1/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
# 保存修改,然后更新環境變量
$ source /etc/profile
2.3 測試CUDA是否安裝成功 cd ~
cp -r /usr/local/cuda-10.1/samples/ .
cd samples/
# make大概要10分鐘左右
make
cd ./1_Utilities/deviceQuery
./deviceQuery
# 出現如下類似結果,表示成功
./deviceQuery Starting...
CUDA Device Query (Runtime API) version (CUDART static linking)
Detected 2 CUDA Capable device(s)
Device 0: "GeForce RTX 2080 Ti"CUDA Driver Version / Runtime Version 10.1 / 10.1CUDA Capability Major/Minor version number: 7.5Total amount of global memory: 11019 MBytes (11554717696 bytes)(68) Multiprocessors, ( 64) CUDA Cores/MP: 4352 CUDA CoresGPU Max Clock rate: 1545 MHz (1.54 GHz)Memory Clock rate: 7000 Mhz
# 3 安裝cuDNN 7.6 tar -zxvf cudnn-10.1-linux-x64-v7.6.1.34.tgz
sudo cp cuda/include/cudnn.h /usr/local/cuda/include/
sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64/
sudo chmod a+r /usr/local/cuda/include/cudnn.h
sudo chmod a+r /usr/local/cuda/lib64/libcudnn*
cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2
# 輸出結果如下:
#define CUDNN_MAJOR 7
#define CUDNN_MINOR 6
#define CUDNN_PATCHLEVEL 1
--
#define CUDNN_VERSION (CUDNN_MAJOR * 1000 + CUDNN_MINOR * 100 + CUDNN_PATCHLEVEL)
# 4 安裝Anaconda(Python 3.7 version) 下載 Anaconda,網址:https://www.anaconda.com/distribution/#download-section 開始安裝 $ sudo chmod +x Anaconda3-2019.03-Linux-x86_64.sh
$ sudo bash Anaconda3-2019.03-Linux-x86_64.sh
# 5 安裝TensorFlow 1.14(GPU版) # 建議先將conda的源設置為國內的,否則速度太慢
$ conda install tensorflow-gpu==1.14.0
如果出現anaconda3文件無寫入權限的問題(EnvironmentNotWritableError: The current user does not have write permissions to the target environment),可以使用命令對文件夾授權。 sudo chown -R user_name /path/to/anaconda3
python -c "import tensorflow as tf; tf.enable_eager_execution(); print(tf.reduce_sum(tf.random_normal([1000, 1000])))"
轉載于:https://www.cnblogs.com/robinzh/p/11202732.html
總結
以上是生活随笔 為你收集整理的Dell服务器Ubuntu 18.04 双显卡(2080ti)搭建深度学习环境(CUDA 10.1/cuDNN 7.6/Tensorflow 1.14).md... 的全部內容,希望文章能夠幫你解決所遇到的問題。
如果覺得生活随笔 網站內容還不錯,歡迎將生活随笔 推薦給好友。