ubuntu安装谷歌浏览器 typora+出现编码错误‘ascii‘ codec can‘t encode character ‘\u6b66‘+docker里安装tensorrt报错
一.首先下載谷歌瀏覽器
https://www.google.cn/chrome/
sudo dpkg -i google-chrome-stable_current_amd64.deb
就安裝好了,search谷歌瀏覽器就可以啦。
二,安裝typora
# optional, but recommendedsudo apt-key adv --keyserver keyserver.ubuntu.com --recv-keys BA300B7755AFCFAE# add Typora's repositorysudo add-apt-repository 'deb https://typora.io ./linux/'sudo apt-get update# install typorasudo apt-get install typora三.解決亂碼問(wèn)題
sudo apt-get install unar
unar file.zip?
四.出現(xiàn)編碼錯(cuò)誤'ascii' codec can't encode character '\u6b66' in position 1: ordinal not in range(128)
import sys
sys.stdout.encoding
這個(gè)時(shí)候知道編碼不是utf-8了,所以利用locale -a 查看可以使用的語(yǔ)言環(huán)境
vim ~/.bashrc
export LANG="C.UTF-8"source ~/.bashrc
就可以了.
五.docker里apt-get install tensorrt報(bào)錯(cuò)
https://github.com/NVIDIA/TensorRT/issues/792
tensorrt : Depends: libnvinfer7 (= 7.0.0-1+cuda10.0) but 7.2.2-1+cuda11.1 is to be installedDepends: libnvinfer-plugin7 (= 7.0.0-1+cuda10.0) but 7.2.2-1+cuda11.1 is to be installedDepends: libnvparsers7 (= 7.0.0-1+cuda10.0) but 7.2.2-1+cuda11.1 is to be installedDepends: libnvonnxparsers7 (= 7.0.0-1+cuda10.0) but 7.2.2-1+cuda11.1 is to be installedDepends: libnvinfer-bin (= 7.0.0-1+cuda10.0) but it is not going to be installedDepends: libnvinfer-dev (= 7.0.0-1+cuda10.0) but 7.2.2-1+cuda11.1 is to be installedDepends: libnvinfer-plugin-dev (= 7.0.0-1+cuda10.0) but 7.2.2-1+cuda11.1 is to be installedDepends: libnvparsers-dev (= 7.0.0-1+cuda10.0) but 7.2.2-1+cuda11.1 is to be installedDepends: libnvonnxparsers-dev (= 7.0.0-1+cuda10.0) but 7.2.2-1+cuda11.1 is to be installedDepends: libnvinfer-samples (= 7.0.0-1+cuda10.0) but it is not going to be installedDepends: libnvinfer-doc (= 7.0.0-1+cuda10.0) but it is not going to be installedmv?/etc/apt/sources.list.d/nvidia-ml.list?/etc/apt/sources.list.d/nvidia-ml.list.bak
在apt-get install tensorrt 即可
總結(jié)
以上是生活随笔為你收集整理的ubuntu安装谷歌浏览器 typora+出现编码错误‘ascii‘ codec can‘t encode character ‘\u6b66‘+docker里安装tensorrt报错的全部?jī)?nèi)容,希望文章能夠幫你解決所遇到的問(wèn)題。
- 上一篇: 基于PCA的人脸特征抽取
- 下一篇: CV中的经典网络模型