RL之Q Learning:利用强化学习之Q Learning实现走迷宫—训练智能体走到迷宫(复杂迷宫)的宝藏位置
                                                            生活随笔
收集整理的這篇文章主要介紹了
                                RL之Q Learning:利用强化学习之Q Learning实现走迷宫—训练智能体走到迷宫(复杂迷宫)的宝藏位置
小編覺得挺不錯的,現(xiàn)在分享給大家,幫大家做個參考.                        
                                RL之Q Learning:利用強化學(xué)習(xí)之Q Learning實現(xiàn)走迷宮—訓(xùn)練智能體走到迷宮(復(fù)雜迷宮)的寶藏位置
?
?
目錄
輸出結(jié)果
設(shè)計思路
實現(xiàn)代碼
測試記錄全過程
?
?
?
輸出結(jié)果
?
設(shè)計思路
?
?
?
實現(xiàn)代碼
from __future__ import print_function import numpy as np import time from env import Env from reprint import outputEPSILON = 0.1 ALPHA = 0.1 GAMMA = 0.9 MAX_STEP = 30np.random.seed(0)def epsilon_greedy(Q, state):if (np.random.uniform() > 1 - EPSILON) or ((Q[state, :] == 0).all()):action = np.random.randint(0, 4) # 0~3else:action = Q[state, :].argmax()return actione = Env() Q = np.zeros((e.state_num, 4))with output(output_type="list", initial_len=len(e.map), interval=0) as output_list:for i in range(100):e = Env()while (e.is_end is False) and (e.step < MAX_STEP):action = epsilon_greedy(Q, e.present_state)state = e.present_statereward = e.interact(action)new_state = e.present_stateQ[state, action] = (1 - ALPHA) * Q[state, action] + \ALPHA * (reward + GAMMA * Q[new_state, :].max())e.print_map_with_reprint(output_list)time.sleep(0.1)for line_num in range(len(e.map)):if line_num == 0:output_list[0] = 'Episode:{} Total Step:{}, Total Reward:{}'.format(i, e.step, e.total_reward)else:output_list[line_num] = ''time.sleep(2)?
?
?
測試記錄全過程
開始 ......... ......... . x . ......... . x . .A x o . ......... . x . .A x o . . . ......... . x . .A x o . . . ......... ......... . x . .A x o . . . ......... ......... . x . .A x o . . . ......... ......... . x . . A x o . . . ......... ......... . x . . A x o . . . ......... ......... . x . . A x o . . . ......... ......... . x . . A x o . . . ......... ......... . x . . A x o . . . ......... ......... . x . . x o . . . ......... ......... . x . . x o . . A . ......... ......... . x . . x o . . A . ......... ......... . x . . x o . . A . ......... ......... . x . . x o . . A . ......... ......... . x . . x o . . A . ......... ......... . x . . x o . .A . ......... ......... . x . . x o . .A . ......... ......... . x . . x o . .A . ......... ......... . x . . x o . .A . ......... ......... . x . . x o . .A . ......... ......... . x . . x o . .A . ......... ......... . x . . x o . .A . ......... ......... . x . . x o . .A . ......... ......... . x . . x o . .A . ......... ......... . x . .A x o . .A . ......... ......... . x . .A x o . . . ......... ......... . x . .A x o . . . ......... ......... . x . .A x o . . . ......... ......... . x . .A x o . . . ......... ......... . x . .A x o . . . ......... ......... . x . .A x o . . . ......... ......... . x . .A x o . . . ......... ......... . x . .A x o . . . ......... ......... . x . .A x o . . . ......... ......... . x . .A x o . . . ......... ......... . x . .A x o . . . ......... ......... . x . .A x o . . . ......... ......... . x . .A x o . . . ......... ......... . x . .A x o . . . ......... ......... . x . . x o . . . ......... ......... . x . . x o . .A . ......... ......... . x . . x o . .A . ......... ......... . x . . x o . .A . ......... ......... . x . . x o . .A . ......... ......... . x . .A x o . .A . ......... ......... . x . .A x o . . . ......... ......... . x . .A x o . . . ......... ......... . x . .A x o . . . ......... ......... . x . .A x o . . . ......... ......... . x . . A x o . . . ......... ......... . x . . A x o . . . ......... ......... . x . . A x o . . . ......... ......... . x . . A x o . . . ......... ......... . x . . A x o . . . ......... ......... . x . . x o . . . ......... ......... . x . . x o . . A . ......... ......... . x . . x o . . A . ......... ......... . x . . x o . . A . ......... ......... . x . . x o . . A . ......... ......... . x . . x o . . A . ......... ......... . x . . x o . . A . ......... ......... . x . . x o . . A . ......... ......... . x . . x o . . A . ......... ......... . x . . x o . . A . ......... ......... . x . . x o . . A . ......... ......... . x . . x o . . A . ......... ......... . x . . x o . . A . ......... ......... . x . . x o . . A . ......... ......... . x . . x o . . A . ......... ......... . x . . x o . . A . ......... ......... . x . . x o . . A . ......... ......... . x . . x o . . A . ......... ......... . x . . x o . . A . ......... ......... . x . . x o . . A . ......... ......... . x . . x o . . A . ......... ......... . x . . x o . . A . ......... ......... . x . . x o . . A . ......... ......... . x . . x o . . A . ......... ......... . x . . x o . . A . ......... ......... . x . . x A . . A . ......... ......... . x . . x A . . . ......... ......... . x . . x A . . . ......... Episode:0 Total Step:17, Total Reward:100 . x . . x A . . . ......... Episode:0 Total Step:17, Total Reward:100 . x A . . . ......... Episode:0 Total Step:17, Total Reward:100 . . ......... Episode:0 Total Step:17, Total Reward:100 ......... Episode:0 Total Step:17, Total Reward:100 ......... ......... . x . ......... . x . .A x o . ......... . x . .A x o . . . ......... . x . .A x o . . . ......... ……......... . A . . x o . . . ......... Episode:2 Total Step:30, Total Reward:-5 . A . . x o . . . ......... Episode:2 Total Step:30, Total Reward:-5 . x o . . . ......... Episode:2 Total Step:30, Total Reward:-5 . . ......... Episode:2 Total Step:30, Total Reward:-5 ......... Episode:2 Total Step:30, Total Reward:-5 [F……......... . x . . x o . . A . ......... ......... . x . . x o . . A . ......... ......... . x . . x o . . A . ......... ......... . x . . x o . . A . ......... ......... . x . . x o . . A . ......... ......... . x . . xAo . . A . ......... ......... . x . . xAo . . . ......... ......... . x . . xAo . . . ......... ......... . x . . xAo . . . ......... ......... . x . . xAo . . . ......... ......... . x . . x A . . . ......... ......... . x . . x A . . . ......... ......... . x . . x A . . . ......... Episode:98 Total Step:8, Total Reward:100 . x . . x A . . . ......... Episode:98 Total Step:8, Total Reward:100 . x A . . . ......... Episode:98 Total Step:8, Total Reward:100 . . ......... Episode:98 Total Step:8, Total Reward:100 ......... Episode:98 Total Step:8, Total Reward:100 ......... ......... . Ax . ......... . Ax . . x o . ......... . Ax . . x o . . . ......... . Ax . . x o . . . ......... ......... . Ax . . x o . . . ......... ......... . Ax . . x o . . . ......... ......... . Ax . . x o . . . ......... ......... . Ax . . x o . . . ......... ......... . Ax . . x o . . . ......... ......... . Ax . . x o . . . ......... ......... . x . . x o . . . ......... ......... . x . . A x o . . . ......... ......... . x . . A x o . . . ......... ......... . x . . A x o . . . ......... ......... . x . . A x o . . . ......... ......... . x . . A x o . . . ......... ......... . x . . x o . . . ......... ......... . x . . x o . . A . ......... ......... . x . . x o . . A . ......... ......... . x . . x o . . A . ......... ......... . x . . x o . . A . ......... ......... . x . . x o . . A . ......... ......... . x . . x o . . A . ......... ......... . x . . x o . . A . ......... ......... . x . . x o . . A . ......... ......... . x . . x o . . A . ......... ......... . x . . Ax o . . A . ......... ......... . x . . Ax o . . . ......... ......... . x . . Ax o . . . ......... ......... . x . . Ax o . . . ......... ......... . x . . Ax o . . . ......... ......... . x . . x o . . . ......... ......... . x . . x o . . A . ......... ......... . x . . x o . . A . ......... ......... . x . . x o . . A . ......... ......... . x . . x o . . A . ......... ......... . x . . x o . . A . ......... ......... . x . . x o . . A . ......... ......... . x . . x o . . A . ......... ......... . x . . x o . . A . ......... ......... . x . . x o . . A . ......... ......... . x . . x o . . A . ......... ......... . x . . x o . . A . ......... ......... . x . . x o . . A . ......... ......... . x . . x o . . A . ......... ......... . x . . x o . . A . ......... ......... . x . . xAo . . A . ......... ......... . x . . xAo . . . ......... ......... . x . . xAo . . . ......... ......... . x . . xAo . . . ......... ......... . x . . xAo . . . ......... ......... . x . . x A . . . ......... ......... . x . . x A . . . ......... ......... . x . . x A . . . ......... Episode:99 Total Step:11, Total Reward:100 . x . . x A . . . ......... Episode:99 Total Step:11, Total Reward:100 . x A . . . ......... Episode:99 Total Step:11, Total Reward:100 . . ......... Episode:99 Total Step:11, Total Reward:100 ......... Episode:99 Total Step:11, Total Reward:100 Episode:99 Total Step:11, Total Reward:100?
?
?
?
總結(jié)
以上是生活随笔為你收集整理的RL之Q Learning:利用强化学习之Q Learning实现走迷宫—训练智能体走到迷宫(复杂迷宫)的宝藏位置的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。
 
                            
                        - 上一篇: RL之Q Learning:利用强化学习
- 下一篇: RL之SARSA:利用强化学习之SARS
